Isotopes and Animal Movement Utah 23 June 2015 Keith A. Hobson

Outline

- Linking animals to isoscapes: animals add variance!
 - Transfer functions and turnover ...
 - Physiology/nutrition/ecology ...
 - Reflections on $\delta^2 H$ measurements ...
- Applications:
- Where to from here?

The basic principles of trophic level and source determinations

Respiration (¹²C)

Primary Production

Herbivore

Excretion (¹⁴N)

δ²H of Annual Precipitation

Need for a transfer function will depend on isotope ...

- No need if there is no discrimination
 e.g. heavy elements
 Important if there is discrimination
 e.g. lighter elements
 Metabolism and other rate-limiting steps
 - Ecology/physiology

Pb isotopes linked to surficial geology ...

Stewart et al. MMS 19:806-818

Hg isotopes

Point et al. 2011 Nature Geoscience

Strontium (bedrock model)

C.P. Bataille, G.J. Bowen / Chemical Geology 304-305 (2012) 39-52

Work of Barnet-Johnson in Hobson, Barnet-Johnson and Cerling (isoscapes book, 2010)

For the light isotopes ...

- 1. Create a simple basemap through broad spatial sampling of animal tissue.
- 2. Infer a calibration *relationship* through limited spatial sampling across an isotopic gradient.
- 3. Experimentally derive the calibration relationship through controlled (captive) studies.

An early application using δ^2 H to track Monarch migration

Are monarchs declining due to factors on breeding grounds? Wintering grounds? Both?

Year (data collected during December)

Two populations, one long distance journey

Previously, tagging was used:

Monarchs can be "grown" anywhere!

80 elementary schools recruited throughout the range

The basemap for the year of interest:

Origins: 50% of the population is produced in the US comblelt:

Docykx et al. Ecol. Applic., in press

Transfer function

Hobson et al. 1999 Oecologia 120:397-404

Transfer function derived experimentally

Hobson et al. 1999 Oecologia 120:397-404

Nebraska "deer isoscape"

Henaux et al. MEE 2011

Transfer function through limted sampling (gradients)

Hobson et al. 2012 PLoS ONE

Single Top Model:

• $\delta^2 H_f = Int. + \delta^2 H_p + Migratory Guild + Foraging Substrate + Guild*Substrate$

• Explains ~83% of the variance in $\delta^2 H_f$

Mechanisms?

Foraging substrate:
Microhabitat/dietary variation in δ²H?
Migratory guild:
Molt phenology, feather growth rate?

Dragonfly wing isoscape

Hobson et al. 2012 MEE 3:766-772

Species	Equation	r^2	Model	Source
Birds:	22 5 92 			
6 species of North American songbird	δD=-31 + 0.9δDp	0.83	Н	Hobson and Wassenaar (1997)
6 species of North American songbird	δD=-25 + 0.9δDp	0.88	В	Clark et al. (2006)
6 species of North American songbird	δD=-19.4 + 1.07δDp	0.86	В	Bowen et al. (2005)
Black-throated Blue Warbler	δD=-51 + 0.5δDp	0.86	CH	Chamberlain et al. (1997)
Red-winged blackbird	δD=-27 + 1.1δDp	0.83	Н	Wassenaar and Hobson (2000)
Bicknell's Thrush	δD=-26 + 0.7δDp	0.48	Н	Hobson et al (2001)
Wilson's Warbler	δD=-51.7 + 0.4δDp	0.36	В	J. Kelly (unpublished)
Wilson's Warbler	δD=+14.47 + 1.41δDp	0.91	Μ	Paxton et al. (2007)
Wilson's Warbler	δD=-21 + 0.7δDp	0.48	Μ	Meehan et al. (2004)
Mountain Plover	δD=+17.4 + 1.26δDp	0.36	В	Wunder (2007)
23 species of European birds	δD=-7.8 + 1.27δDp	0.65	В	Hobson et al. (2004d)
23 species of European birds	δD=-22.3+0.77δDp	0.85	В	Bowen et al. (2005)
Cooper's Hawk	δD=-34 + 1.0δDp	0.83	H	Meehan et al. (2001)
Inland generalist raptors	δD=-40+0.62δDp	0.59	H	Lott et al. (2003)
Inland bird-eating raptor	δD=-44.2+0.54δDp	0.37	Н	Lott et al. (2003)
Coastal generalist raptors	δD=-38.8+0.55δDp	0.19	Н	Lott et al. (2003)
Coastal bird-eating raptors	δD=-104.7-0.59δDp	0.12	Н	Lott et al. (2003)
Non-coastal bird-eating raptors	δD=-41.1+0.58δDp	0.46	Н	Lott et al. (2003)
9 species of raptors	δD=-52.2+0.28δDp	0.09	Н	Lott et al. (2003)
9 species of diurnal raptors	δD=-37 + 0.6δDp	0.51	Μ	Meehan et al. (2004)
Raptors in South Carolina	δD=-25 + 0.7δDp	0.18	Μ	Meehan et al. (2004)
Flammulated Owl	δD=-8 + 0.9δDp	0.66	Μ	Meehan et al. (2004)
12 species of raptors	δD=-5.6 + 0.91δDp	0.62	Μ	Lott and Smith (2006)
Scaup	δD=-27.8 + 0.95Dp	0.64	В	Clark et al. (2006)
Mallards and Northern Pintail	δD=-57 + 0.835Dp	0.56	Μ	Hebert and Wassenaar (2005)
Other animals:				
Deer collagen	δD= 4 + 1.02δDp	0.94	С	Cormie et al. (1994)
Hoary bat	δD=-25 + 0.8δDp	0.60	Μ	Cryan et al. (2004)
Monarch butterfly	δD=-79 + 0.62δDp	0.69	Н	Hobson et al. (1999)
Beetle (chitin)	δD=33.2 + 1.60δDp	0.74	В	Gröcke et al. (2006)

dot-opp_resistance twents
Residuals IDW

Production Map

[sth-sop_resistance] (restances (restances)

- 56.9205664 - 16.0737645

- 66.9730666 - 26.0377645

- 6.9730666 - 26.0377612

- 2.92357412 - 1.09201905

I stances - 2.3733443

0 stances - 2.3733443

1 stances - 2.373344

1 stances - 2.373344

1 stances - 2.37344

1 stances - 2.37344

1 stances - 2.3734

1 stances - 2.3734

1 stances - 2.373

1 stances - 2.37

1 stances - 2.37

1 stances - 2.373

1 stances - 2.37

1 stances - 2.373

Several controlled studies for $\delta^{15}N$, $\delta^{13}C$ but few for $\delta^{2}H$, $\delta^{18}O$

• $\delta^{15}N, \delta^{13}C \dots$

Multiple sources of O and H

Pietsch et al. 2011 PLoS ONE

Pietsch et al. 2011 PLoS ONE

Pietsch et al. 2011 PLoS ONE

Pietsch et al. 2011 PLoS ONE

Pietsch et al. 2011 PLoS ONE

Stable-hydrogen isotope heterogeneity in keratinous materials: mass spectrometry and migratory wildlife tissue subsampling strategies

Leonard I. Wassenaar* and Keith A. Hobson

Species	Individual # (mg)	Feather δD mean (SD), ‰	n	Feather range, ‰	Feather CV	Rachis mean (SD), ‰	n	Rachis range, ‰	Rachis CV	∆ Feather-rachis ‰
Captive Raised										
Poultry	1 (0.25)	-145 (2.5)	12	-148 to -139	1.7					
	1 (0.35)	-147 (2.4)	12	-151 to -143	1.6	-146 (5.3)	5	-152 to -138	3.6	1.0
	1 (0.45)	-150(2.5)	12	-154 to -146	1.7					
	2 (0.35)	-146 (4.5)	10	-137 to -150	3.1	-147 (5.5)	5	-155 to -141	3.7	1.0
	2 (1.0)	-144(2.5)	10	-150 to -140	1.7					
	2 (2.0) ^a	-155 (10.9)	10	-170 to -133	7.0					
	3 (0.25)	-169 (1.6)	11	-171 to -166	1.0					
	3 (0.35)	-171 (1.6)	12	-174 to -169	1.0	-177(2.8)	5	-180 to -173	1.6	6.0
	3 (0.45)	-175 (1.3)	11	-178 to -173	0.7					
	3 (0.60)	-175(1.0)	12	-177 to -174	0.5					
Wild Birds										
Swainson's thrush	1	-64 (2)	3	-66 to -63	3.1	-74 (8)	3	-80 to -71	10.8	10.0
	2	-81 (3)	3	-84 to -78	3.7	-90 (10)	3	-97 to -78	11.1	9.0
	3	-67 (1)	3	-68 to -66	1.5	-75 (5)	3	-80 to -71	6.7	8.0
	4	-88 (4)	3	-91 to -83	4.8	-96 (2)	3	-99 to -94	2.1	8.0
	5	-81 (9)	3	-90 to -73	1.1	-85 (5)	3	-90 to -80	5.9	4.0
	6	-66 (2)	3	-69 to -64	3.0	-75 (6)	3	-81 to -69	8.0	9.0
	7	-72 (2)	3	-74 to -71	2.8	-76 (5)	3	-82 to -72	6.6	4.0
	8	-90 (1)	3	-92 to -89	1.1	-96 (5)	3	-100 to -90	5.2	6.0
	9	-85 (2)	3	-86 to -82	2.4	-88 (6)	3	-94 to -83	6.8	3.0
Lesser scaup	1	-122 (2)	6	-124 to -118	1.6	-128	2	-128 to -128	_	6.0
Roseatte spoonbill	1	-23 (6)	6	-32 to -13	26.1	-28 (7)	3	-35 to -21	25	5.0
Andean condor	1	-106 (4.6)	20	-112 to -98	4.3	-110 (6)	5	-119 to -108	5.5	4.0
Bald eagle	1	-103(13)	19	-120 to -79	126	106 (11)	5	-120 to -93	10.4	3.0

*2 mg sample and reference keratins dynamically diluted by 50% with He.

Studds et al. (2012) Diversity and Distributions 1-12.

The Condor 113(3):555-564 © The Cooper Ornithological Society 2011

CORRELATES OF DEUTERIUM (&D) ENRICHMENT IN THE FEATHERS OF ADULT AMERICAN KESTRELS OF KNOWN ORIGIN

JENNIFER L. GREENWOOD¹ AND RUSSELL D. DAWSON

Juveniles show strong $\delta^2 H_f vs. \delta^2 H_p$ BUT not adults ...

See also

Also seen in some owls

¹H₂O loss through gular fluttering Caeca involved in H₂O regulation

Using a wind tunnel and isotopic dietary shifts to mimic migration

Max Planck Institute for Ornithology

Oxygen?

Human Hair

Ehleringer et al. (PNAS 2008)

Stable Isotope Analysis of Modern Human Hair Collected From Asia (China, India, Mongolia, and Pakistan)

A.H. Thompson,^{1,2}* L.A. Chesson,^{1,2} D.W. Podlesak,^{1,2} G.J. Bowen,³ T.E. Cerling,^{1,2,4} and J.R. Ehleringer^{1,2} AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 000:000-000 (2010)

Meteoric relationship preserved in Monarch Butterflies

Hydrogen isotopes work better than Oxygen isotopes

Tissue turnover

- Over what period do tissue isotope values represent dietary integration?
 - Single compartment "exponential" models
 - Multiple compartment "reaction progress" models

The isotopic clock and movement

Biome 2

8X (per mil)

Hydrogen

Involves a doubling of mass, so isotopic effects are large

Hydrogen exchange:

Things to know about H:

- ²H/¹H represents high potential for isotopic discrimination.
- O-H and N-H bonds are weak: exchange.
- Drinking water and diet are sources of H.
- Recent analytical advances (CFIRMS) have lead to small sample requirements:
 - Sample inhomogeneities are now important.
 - Laboratory standards are esp. important.

TRACKING ANIMAL MIGRATION WITH STABLE ISOTOPES

edited by Keith A. Hobson & Leonard I. Wassenaar

VOLUME 2 IN THE TERRESTILIAL ECOLOGY SERIES

Primary Goals of Migration Research

Evolution and Ecology.
Conservation and Management.
Movement of Contaminants and Disease.

Biogeochemical processes result in isotopic patterns or "isoscapes" ...

Isoscapes?

•Terrestrial-marine ($\delta^{13}C, \delta^{15}N \delta^{34}S$) Inshore-offshore ($\delta^{13}C$, $\delta^{34}S$, $\delta^{15}N$) •C-3 vs. C-4, CAM (δ^{13} C, δ D) •Xeric vs. Mesic ($\delta^{13}C, \delta^{15}N$) •Latitudinal/altitudinal gradients (δD , $\delta^{13}C$) Surficial geology (Sr, Pb, others)

First isotope applications

Killingley (1980) – δ^{18} O barnacles "you are what you swim through"

Killingley and Lutcavage (1983) δ^{13} C and δ^{18} O

From Schell et al.2002

Bowhead whales

Temperature and CO_2 controls planktonic $\delta^{13}C$ across latitudes

Quillfeldt et al. (2010) BES.

Latest marine isoscapes

McMahon et al (2013) Limnol. Oceanogr. 58:697-714

Problems with extrinsic markers

- Organism often needs to be recovered
- Expensive
- Body size requirements
- Biased to original marked population

Mesic to xeric isotopic gradients help "locate" individuals and their tissues ...

Forensic tracing of African ivory

 δ^{13} C, δ^{15} N, δ^{87} Sr, δ^{204} Pb

Vogel et al. (1990); van der Merwe et al (1990)

Wintering habitat determines arrival time on breeding grounds

Marra et al. (Science 1998)

Gonzalez-Prieto and Hobson, J. Ornith. (2012)

Breakthrough with water isotopes

Latest growing-season δ^2 Hp

Wassenaar, IAEA.

For most birds ...

Altitudinal gradients are recorded in hummingbird feathers:

Hobson et al. Oecologia 136:302-308

The feather isotopes follow large scale trajectories in precip δD

Ecuador: $\delta D_f = -25.6 + E(-0.014) - 25 \circ/00$

Global: $\delta D_f = -22 + E(0.0224) - 25 \circ/00$

19月2日7月2月

772020

"Leapfrog" migration revealed ..

Kelly et al. (Oecologia 2002)

Other isotopic delineations of population structure ...

Rubenstein et al. (Science 2002)

Incorporating uncertainty in assignments

Chapter 12 Using Isoscapes to Model Probability Surfaces for Determining Geographic Origins

Michael B. Wunder

Ecological Applications, 18(2), 2008, pp. 549–559 © 2008 by the Ecological Society of America

IMPROVED ESTIMATES OF CERTAINTY IN STABLE-ISOTOPE-BASED METHODS FOR TRACKING MIGRATORY ANIMALS

Michael B. Wunder^{1,3} and D. Ryan Norris²

- 24 - 20

16

12

8

Hobson et al. JFO (2014)

Applying prior probabilities

Raw Isotope Assignment

BBS Abundance

Assignment with Prior

Combining genetics and δD

Fig. 10. Breeding subregions of western birds defined by stable hydrogen and genetic contours obtained b overlapping the kriging results of δD values for feathers with west predicted probabilities. The exclusion zon corresponds to the area east of the 10% west genetic contour (dashed black line).

Boulet et al. (Ornithol Monogr)

Ruegg et al. 2014

Gómez-Diaz and González-Solis

Origins of Woodpigeons killed in France

Several distinct populations with specific migratory traits

Long-range migrant (winter southern range of Europe)

Medium-range migrant (winter in France)

sedentary /

Modeling isoscapes and origins using multiple isotopes

Assumes a multivariate normal distribution
All isotopes are orthogonal

Major overwintering site for Palearctic-Aftrotopical migrants

Plant isotope distribution models

%C₄ x (-12 %) + %C₃ x (-27 %)

Plant $\delta^{13}C$ (‰)

 Plant isotope map based on predicted C3 vs. C4 plants

Still and Powell (2010)
Feather δ^{13} C isoscape

A feather δ^{15} N isoscape Based on Craine et al. (2009, New Phytologist)

• Modeled MAT, MAP with foliar $\delta^{15}N$

Feather $\delta^{15}N$ isoscape

Feather $\delta^2 H$ isoscape

Combining δ^{13} C, δ^{15} N, δ^{2} H feather isoscapes

Combining two isotopes into a single probability surface

A multi-isotope (δ^2 H, δ^{13} C, δ^{15} N) probability surface

Some other considerations and future directions....

Fig. 1. Map showing the individual GNIP stations that measured the (weighted) annual mean δ^2 H and δ^{18} O composition of precipitation for at least 1 year during 1960–2001 (N=467). Background map shows the annual mean temperature (WorldClim data; see Hijmans et al., 2005).

Advances in water isoscapes

Trace element/heavy isotope

н]	Biological and Water Samples															He				
Li	Be		BCNOF															Ne			
Na	Mg															Si	F		S	CI	Ar
к	Са	Sc	Т	i I	V	Cr	Mi	n F	e C	ò	Ni	Cι	ı Z	n G	Эa	Ge	A	s S	e	Br	Kr
Rb	Sr	Y	Z	r N	۱b	Мo	Τe	R	u F	Rh	Pd	Ag	3 C	dI	n	Sn	S	b T	e	I	Xe
Cs	Ва	La	н	lf 1	Га	W	Re	0	s	r	Pt	Αι	л Н	g .	TI	Pb	В	i P	0	At	Rn
Fr	Ra	Ac	Ac																		
			Се	Pr	N	d F	'n	Sm	Eu	G	d T	Гb	Dy	Но	E	ir l'	Tm	Yb	Lu	ı	
			Th	Pa		LN	In	Pa	Δm		m F	зk	Cf	F۹	1	n I	ЫN	No	1.		

Compound specific Mass spectrometry